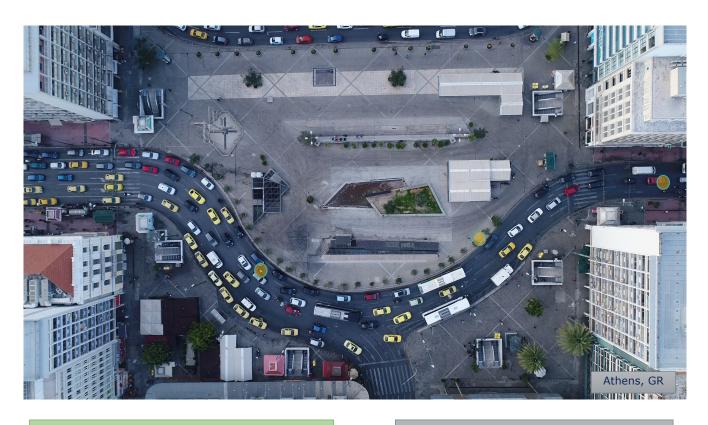


Challenges in the field of research

Complex interactions

- Multimodality
- Components adapt
- Competing operators
- Spreading phenomena



Limits to predictability

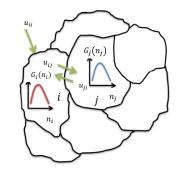
Limits to centralization

Limits to cooperation

A human-centric ubiquitous mobility NCCR Automation

LARGE-SCALE CONTROL

MONITORING



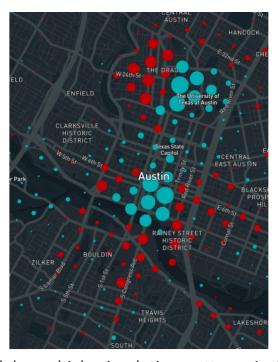
Motivation

Imbalance between passenger demand and vehicle supply

Goal: Empty vehicle repositioning

Reposition vehicles to high demand regions

Introduction

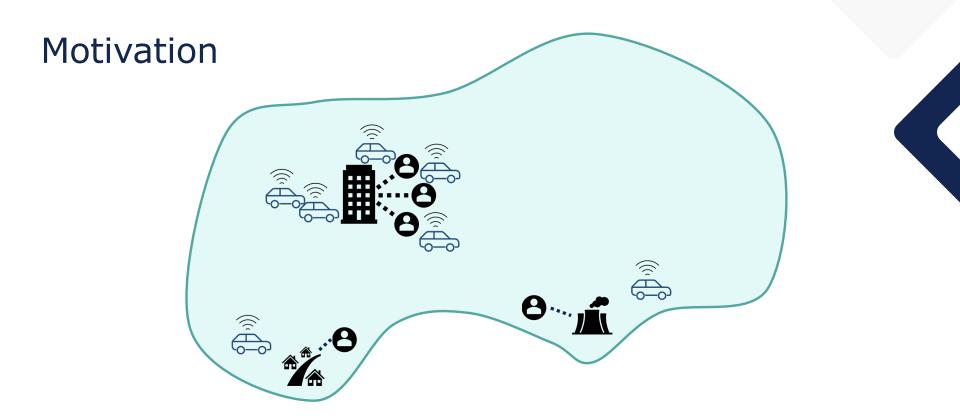


Imbalance between supply and demand:

- Non-uniform passenger's demand for rides in different districts
- Asymmetry between origin and destination distributions of trips

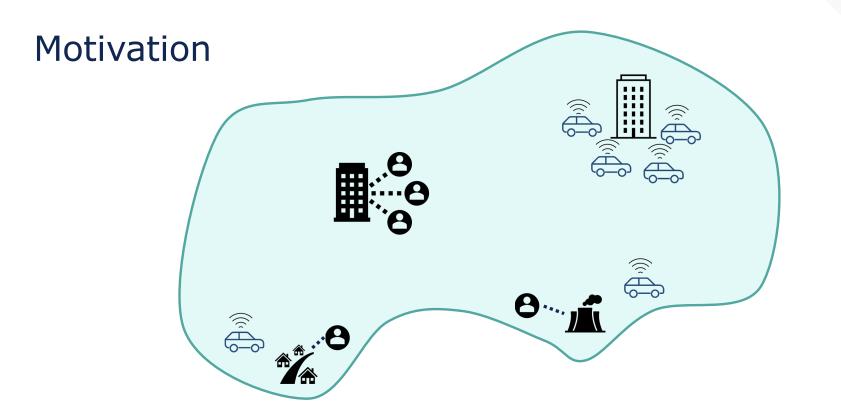
weekday vehicle circulation patterns in Austin, Texas

Teal circles: areas that net attract vehicles; Red circles: areas that net lose vehicles.



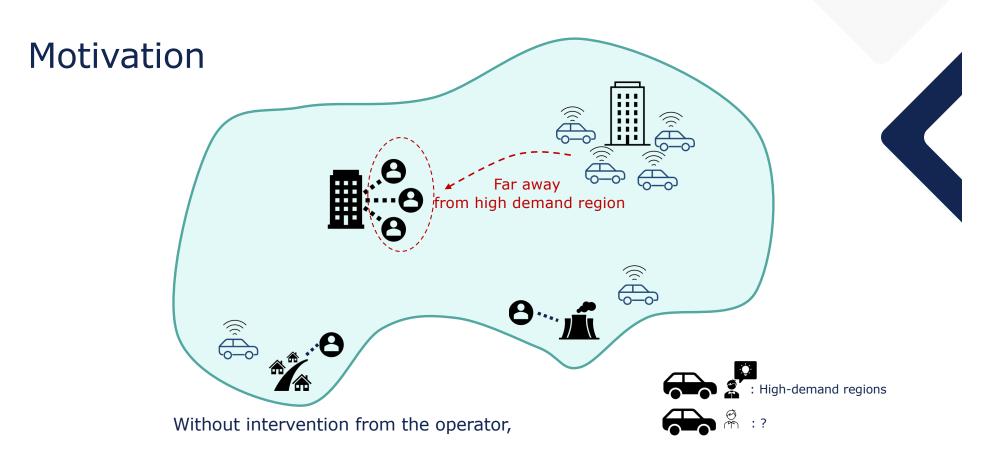
Imbalance in the spatial distribution of vehicles:

- Non-uniform passenger's demand for rides in different districts,
- Asymmetry between origin and destination distributions of trips.



Imbalance in the spatial distribution of vehicles:

- Non-uniform passenger's demand for rides in different districts,
- Asymmetry between origin and destination distributions of trips.



The fleet will be increasingly concentrated in low-demand locations, rather than high-demand locations.

Goal: rebalancing vehicles

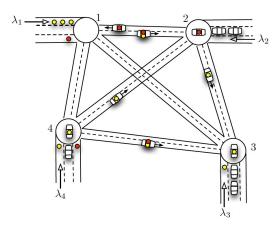
• Relocating vehicles to the high-demand regions.

State-of-the-art

- applied to car-sharing or bike-sharing systems but few in the ride-sourcing systems.
- operated with a long rebalancing interval
- limited to several stations with a small fleet size.

Region/Station-level rebalancing strategy

Q: Is it possible to get a more precise position guidance?



^{1. &}lt;a href="https://www.eltis.org/discover/news/stockholms-bike-sharing-scheme-receive-electrifying-upgrade-sweden">https://www.eltis.org/discover/news/stockholms-bike-sharing-scheme-receive-electrifying-upgrade-sweden

^{2. [}Smith, 2013]. "Rebalancing the rebalancers: Optimally routing vehicles and drivers in mobility-on-demand systems."

Vision

- A new mobility paradigm through flexibility, cooperation and collectivity.
- Revolutionize how emerging technologies reshape mobility
- Avoid erratic developments that can create monopolice
- Identify new ways of governance
- Integrate distributed and hierarchical control

Data and simulation description

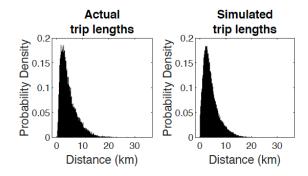
Trip-based MFD model

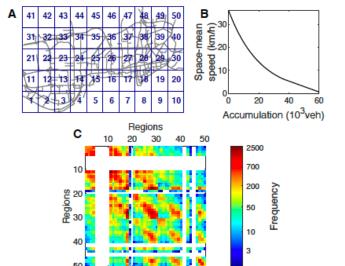
$$l_0 = \int_{t_0}^{t_0 + \tau_0} v(n(k)) \, dk$$

- Fleet size
- Willingness to share
- Drivers' behavior
 - Cruise immediately
 - Rebalance to depots;

Locations of depots and closest nodes.

Greedy Pooling policy





O-D demand

11

Results

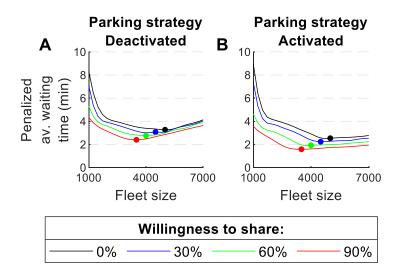


Figure 1. Average Waiting times.

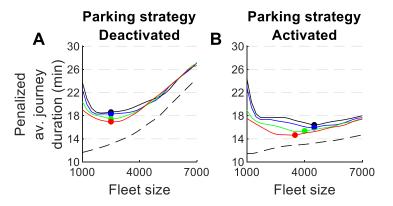


Figure 2. Average journey duration.

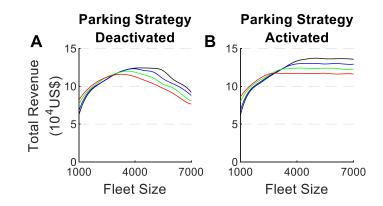


Figure 3. System's revenues.

Idle-vehicle Rebalancing Coverage Control for Ride-sourcing systems¹

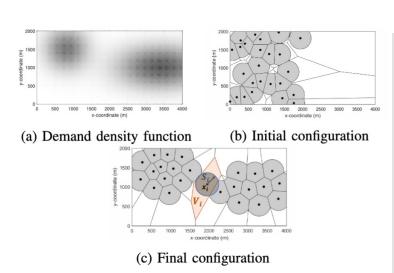


Fig. 1: Continuous case study

 x_i : position of idle AVs, S_i : covered area, n: fleet size of idle AVs, V_i : Voronoi cell, $W_i = S_i \cap V_i$.

Vehicle rebalancing problem

Every agent/vehicle x_i is responsible for covering a certain area W_i

$$H(X,W) = \sum_{i=1}^{n} H(x_i, W_i) = \sum_{i=1}^{n} \int_{q \in W_i} ||x_i - q||^2 \varphi(q) dq$$

 $\varphi(q)$: demand density function,

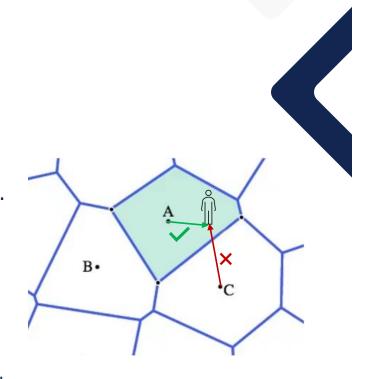
[1] P. Zhu et al, "Idle-vehicle Rebalancing Coverage Control for Ride-sourcing systems," ECC 2022.

Voronoi partition:

- The partitioning of a plane with n points into covex polygons.
- Each cell contains one generator/seed.
- Every point in a given cell is closer to its seed than to any other.

Why we use it?

o The pick-up task at a point $q \in V_i$ in the Voronoi cell V_i should be executed by the vehicle closest to q, which is exactly the vehicle i.



Distributed Coverage Control Algorithm

Every agent/vehicle x_i is responsible for covering a certain area W_i

$$H(X,W) = \sum_{i=1}^{n} H(x_i, W_i) = \sum_{i=1}^{n} \int_{q \in W_i} ||x_i - q||^2 \varphi(q) dq$$

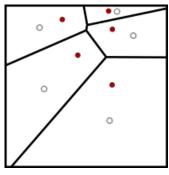
where $\varphi(q)$ is the demand density function.

The local minimum of H can be obtained when all x_i are located at centroids (centers of mass, C_{W_i}) of their respective Voronoi cells (W_i) , i.e., **Centroidal Voronoi Configuration(CVC)**[1].

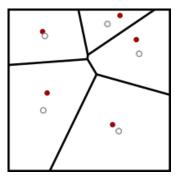
[1] Du, Q., V. Faber and M. Gunzburger (1999) Centroidal voronoi tessellations: Applications and algorithms

Lloyd's algorithm:

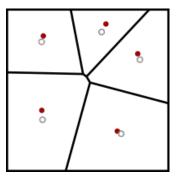
- 1) Obtain the Voronoi Parition;
- 2) Calculate the centroid of each cell;
- 3) Move from current position to the centroid;
- 4) Return to Step 1), until find the centroidal Voronoi configuration (CVC).



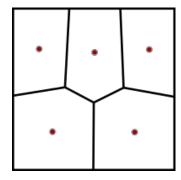
Iteration 1



Iteration 2



Iteration 3

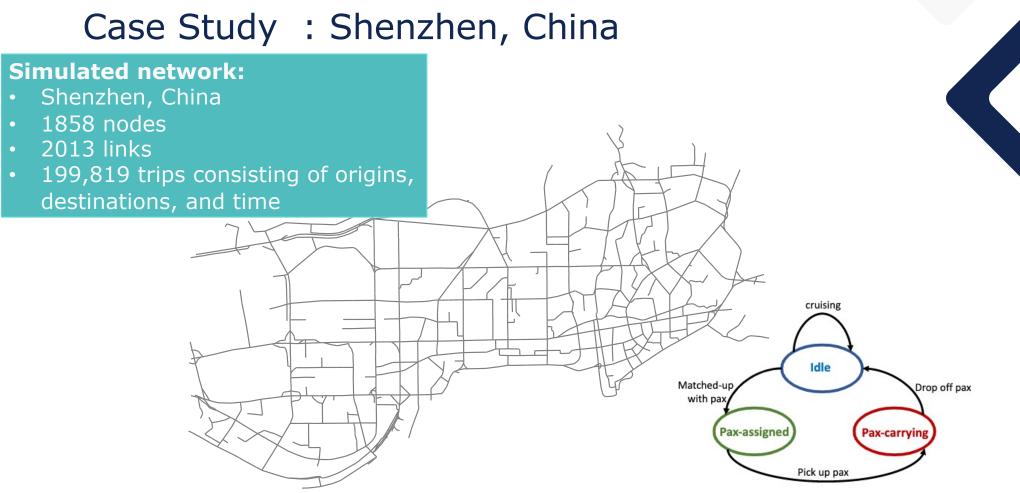


Iteration 4 (CVC)

Example of Lloyd's algorithm.

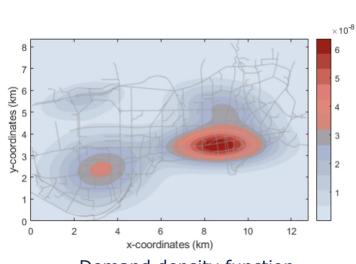
The Voronoi diagram of the current positions (red) at each iteration is shown.

The gray circles denote the centroids of the Voronoi cells

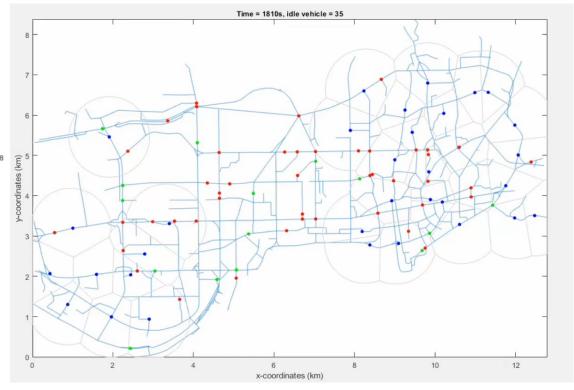


[1] Beojone, Caio & Geroliminis, Nikolas. (2020). On the inefficiency of ride-sourcing services towards urban congestion.

Case Study: Shenzhen, China



Demand density function



Demo video

idle vehicle (i.e., empty, looking for a passenger), blue:

passenger-assigned vehicle, green: red: passenger-carrying vehicle.

Results and Analysis

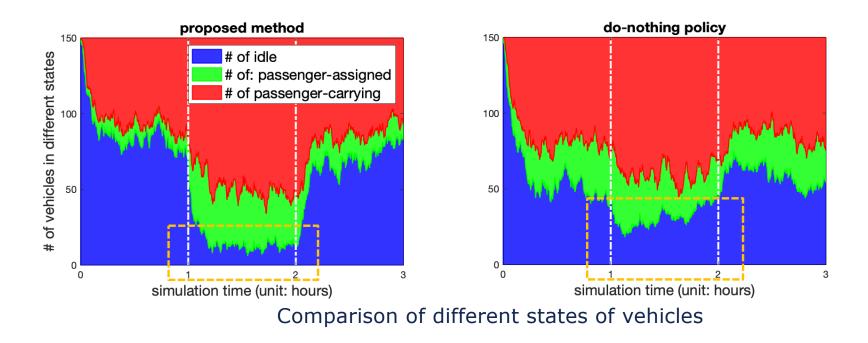
- 3-hour simulation
- Time Pattern of demand: low-high-low, each period lasts for 1 hour
- 2400 orders
- Fleet size = 150

	CVR	Do-nothing	Improvement
Answer rate (%)	82.9	73.2	13.3%↑
Average waiting time (s)	132.5	173.9	23.8%↓

NB:

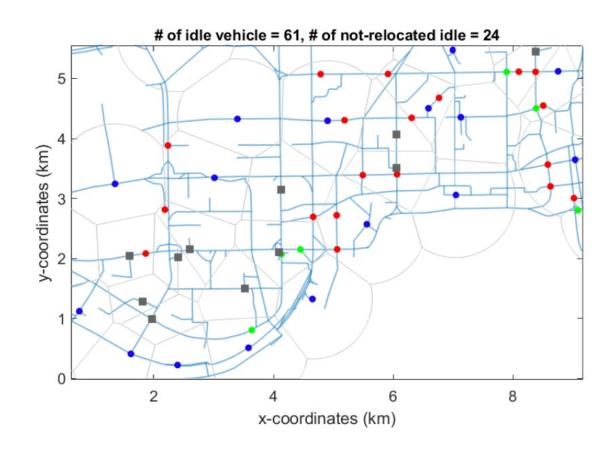
- 1. CVR: Coverage Control for Vehicle Rebalancing;
- 2. Do-nothing: AVs stop at their last destinations, until they are matched with passengers again.

Results and Analysis



Operate the fleet more efficiently as a larger amount of vehicles are actively serving passengers

Extension: Is it necessary to make all empty vehicles follow coverage control?



Blue dot: active idle

Gray square: Not-relocated idle

Extension: Is it necessary to make all empty vehicles follow coverage control?

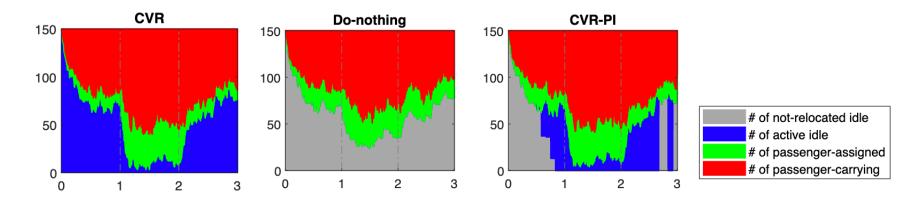
Pros

- Enhanced answer rate
- Reduced waiting times

Cons:

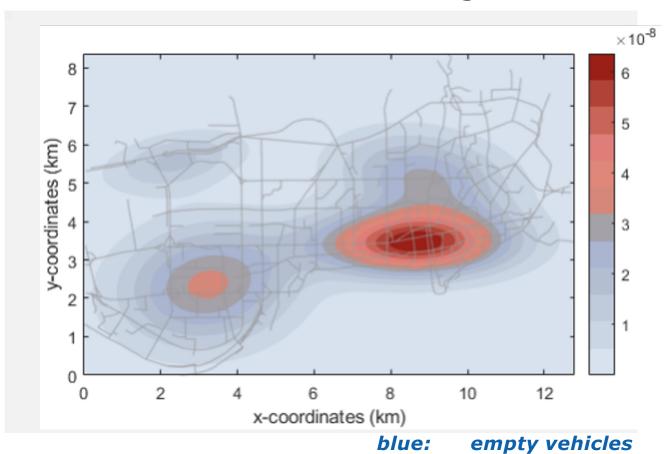
- Extra energy or fuel cost
- Congestion
- Emissions

Extension: Is it necessary to make all empty vehicles follow coverage control?

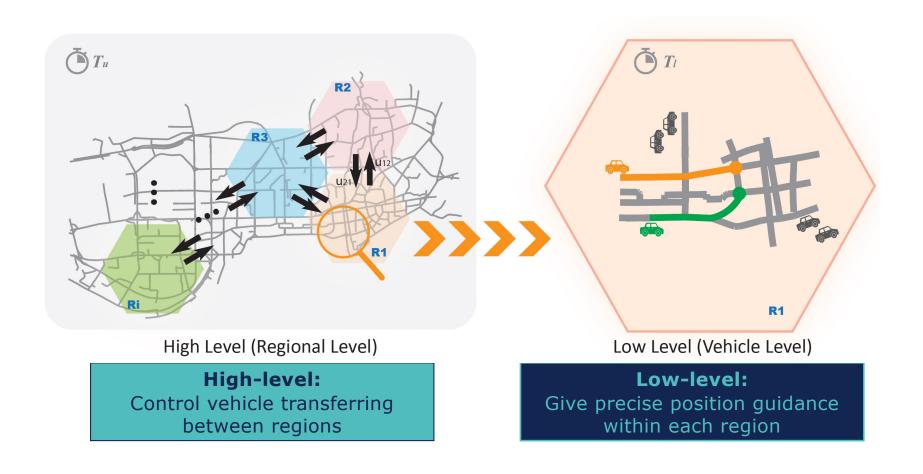


	Answer rate (%)	Average waiting time (s)	Rebalancing distance (km)
CVR	82.6	127.0	4804.8
CVR-PI	82.4	139.4	2314.7
Do-nothing	73.1	155.1	0

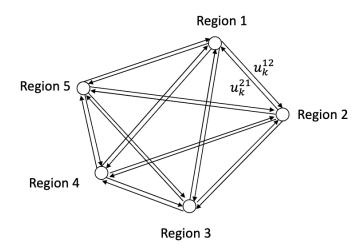
Drawback of use coverage control only: it may lack coordination of other regions



Hierarchical structure for Vehicle Rebalancing



DeePC for Vehicle Rebalancing



Assume AMoD system is a LTI system with measurable disturbance:

$$\begin{cases} x_{k+1} = Ax_k + Bu_k + B_d w_k \\ y_k = Cx_k + Du_k + D_d w_k, \end{cases}$$

Schematic diagram of inter-regional rebalancing

Control input

 u_{IJ} : No. of empty vehicles be relocated from Region I to Region J.

Output

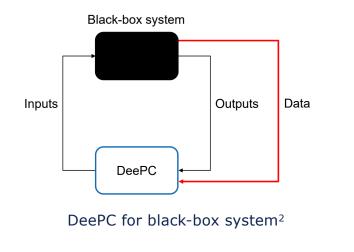
 y_{I} : No. of successfully answered requests in Region I.

External disturbance

 w_I^o : No. of requests which starts from Region I, w_I^D : No. of requests which ends in Region I.

Data-enabled Predictive Control Algorithm(DeePC)¹

- Non-parametric method
- Use input/output trajectories
- Satisfy input/output constraints



^[1] Coulson et al. (2018), "Data-Enabled Predictive Control: In the Shallows of the DeePC"

^[2] Huang et al. (2019), https://drive.google.com/file/d/1DU-JkNShGAX23ZKzGAcw97Qg tLzVx-g/view

• A discrete-time linear time-invariant (LTI) system:

$$\begin{cases} x_{t+1} = Ax_t + Bu_t \\ y_t = Cx_t + Du_t \end{cases}$$

• Historical input and output data of length T:

$$\begin{cases} u^{d} = col(u_1, ..., u_i, ..., u_T) \\ y^{d} = col(y_1, ..., y_i, ..., y_T) \end{cases}$$

Hankel matrix:

$$\mathcal{H}_L(u) := \left[egin{array}{cccc} u_1 & u_2 & \dots & u_{T-L+1} \ u_2 & u_3 & \dots & u_{T-L+2} \ dots & dots & \ddots & dots \ u_L & u_{L+1} & \dots & u_T \end{array}
ight] \quad u ext{ is persistently exciting of order } L$$

if $H_L(u)$ has full row rank.

• A discrete-time linear time-invariant (LTI) system:

$$\begin{cases} x_{t+1} = Ax_t + Bu_t \\ y_t = Cx_t + Du_t \end{cases}$$

Historical input and output data of length T:

$$\begin{cases} u^{d} = col(u_1, ..., u_i, ..., u_T) \\ y^{d} = col(y_1, ..., y_i, ..., y_T) \end{cases}$$

• Construct input/output Hankel matrix:

the first
$$T_{ini}$$
 block row $\{\begin{bmatrix} U^p \\ U^f \end{bmatrix} := \mathcal{H}_{T_{ini}+N}(u^d),$ the last N block row $\{\begin{bmatrix} Y^p \\ Y^f \end{bmatrix} := \mathcal{H}_{T_{ini}+N}(y^d).$

If u^d is persistently exciting of order $T_{ini} + N + n$, then $col(u_{ini}, y_{ini}, u, y)$ is a trajectory of this system¹ if and only if there exists $g \in \mathbb{R}^{T-T_{ini}-N+1}$ such that

$$\begin{bmatrix} U^p \\ Y^p \\ U^f \\ Y^f \end{bmatrix} g = \begin{bmatrix} u_{ini} \\ y_{ini} \\ u \\ y \end{bmatrix} \text{Most recent measurement (of length } T_{ini})$$
 Future trajectory (Horizon N)

"All trajectories can be reconstructed from finitely many, sufficeiently rich previous trajectories"2

- [1] Willems et al. (2005), "A note on persistency of excitation."
- [2] Jeremy Coulson, John Lygeros, and Florian Dörfler. Sparse learning workshop 2020.

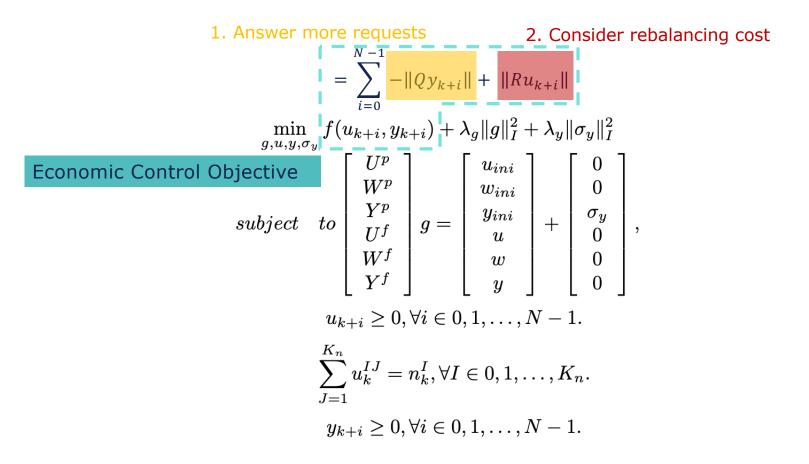
MPC:

$$\begin{split} & \underset{u,x,y}{\text{minimize}} & \sum_{k=0}^{T_{\mathrm{f}}-1} \left(\left\| y_k - r_{t+k} \right\|_Q^2 + \left\| u_k \right\|_R^2 \right) \\ & \text{subject to} & x_{k+1} = Ax_k + Bu_k, \ \forall k \in \{0,\dots,T_{\mathrm{f}}-1\}, \\ & y_k = Cx_k + Du_k, \ \forall k \in \{0,\dots,T_{\mathrm{f}}-1\}, \\ & x_{k+1} = Ax_k + Bu_k, \ \forall k \in \{-T_{\mathrm{ini}},\dots,-1\}, \\ & y_k = Cx_k + Du_k, \ \forall k \in \{-T_{\mathrm{ini}},\dots,-1\}, \\ & y_k \in \mathcal{U}, \ \forall k \in \{0,\dots,T_{\mathrm{f}}-1\}, \\ & y_k \in \mathcal{Y}, \ \forall k \in \{0,\dots,T_{\mathrm{f}}-1\}. \end{split}$$

DeePC:

$$\begin{split} & \underset{g,u,y}{\text{minimize}} & \sum_{k=0}^{T_{\mathrm{f}}-1} \bigg(\left\| \left\| y_{k} - r_{t+k} \right\| \right\|_{Q}^{2} + \left\| u_{k} \right\|_{R}^{2} \bigg) \\ & \text{subject to} & \mathscr{H}_{T_{\mathrm{ini}} + T_{\mathrm{f}}} \begin{pmatrix} \hat{u} \\ \hat{y} \end{pmatrix} g = \begin{pmatrix} \hat{u}_{\mathrm{ini}} \\ \hat{y}_{\mathrm{ini}} \\ u \\ y \end{pmatrix}, \\ & u_{k} \in \mathcal{U}, \ \forall k \in \{0, \dots, T_{\mathrm{f}} - 1\}, \\ & y_{k} \in \mathcal{Y}, \ \forall k \in \{0, \dots, T_{\mathrm{f}} - 1\}. \end{split}$$

Predictive model and state estimation in MPC is replaced by raw data in a Hankel matrix in DeePC¹.

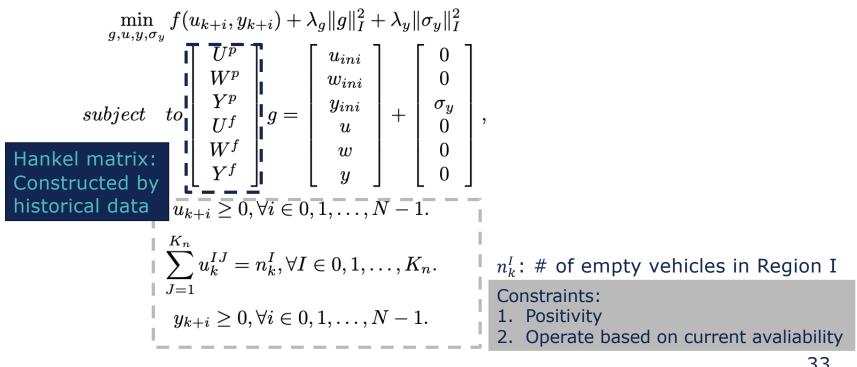


Economic Control Objective
$$\begin{aligned} \min_{g,u,y,\sigma_y} f(u_{k+i},y_{k+i}) + \lambda_g \|g\|_I^2 + \lambda_y \|\sigma_y\|_I^2 \\ W^p \\ W^p \\ Y^p \\ U^f \\ W^f \\ Y^f \end{bmatrix} g = \begin{bmatrix} u_{ini} \\ w_{ini} \\ y_{ini} \\ u \\ w \\ y \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \sigma_y \\ 0 \\ 0 \\ 0 \end{bmatrix}, \end{aligned}$$
 Regularization terms: 1. Feasibility 2. Avoid overfitting
$$u_{k+i} \geq 0, \forall i \in 0,1,\ldots,N-1.$$

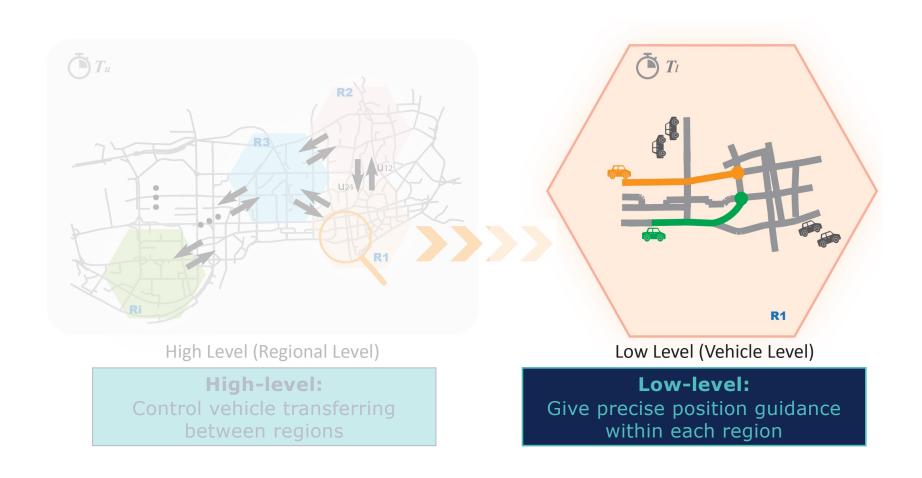
$$\sum_{J=1}^{K_n} u_k^{IJ} = n_k^I, \forall I \in 0,1,\ldots,K_n.$$

$$u_{k+i} \geq 0, \forall i \in 0,1,\ldots,N-1.$$

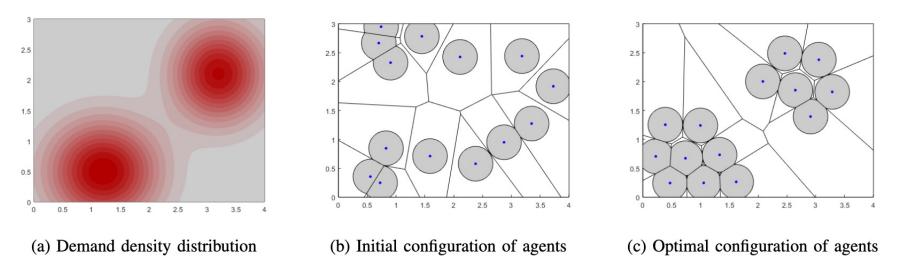
$$u_{k+i} \geq 0, \forall i \in 0,1,\ldots,N-1.$$



Low-level controller

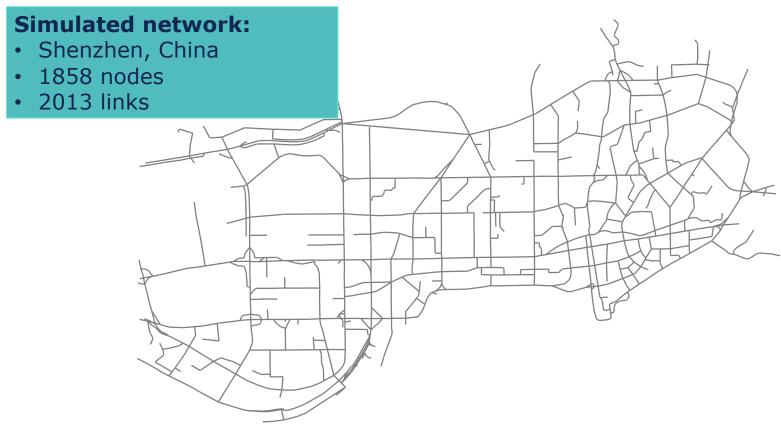


Low-level controller: Coverage Control-based "What is the demand is not evenly distributed in one region?"



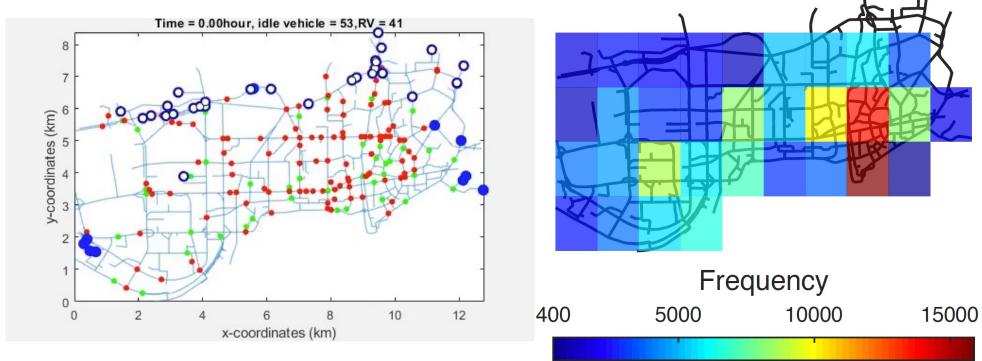
Coverage control algorithm has been applied in mobile multi-agent problems¹.

Case Study



[1] Beojone et al.(2020), "On the inefficiency of ride-sourcing services towards urban congestion."

Demo video



Blue circles (High): vehicles rebalanced to another region Blue dots (Low): vacant vehicles staying in current region

green: passenger-assigned vehicle, red: passenger-carrying vehicle.

Trip Origin Distribution

Results and Analysis

- 3-hour simulation
- 5500 orders
- Fleet size = 300

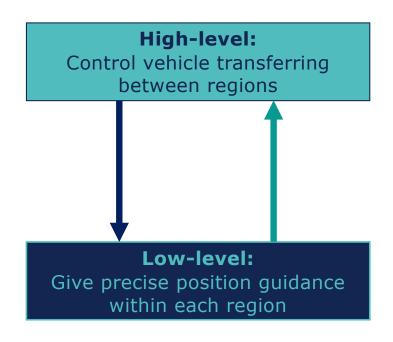
	Answer rate (%)	Average waiting time (s)	Rebalancing distance (km)
Upper + Lower	88.5	134.7	4276.7
Upper Only	85.5	139.3	4958.4
Lower Only	84.2	139.0	5155.1
No Control	53.8	155.6	0.0
No Control (fleet size = 450)	69.2	140.4	0.0

NB:

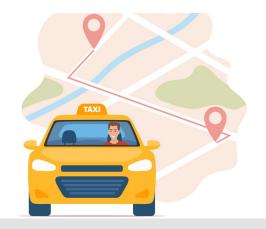
- 1. Upper + Lower: apply DeePC as high-level controller, meanwhile, apply coverage control for each region.
- 2. Upper Only: only apply DeePC for the inter-regional vehicle transfer.
- 3. Lower Only: only apply coverage control for the whole map.
- 4. No Control: vehicles stop at their last destinations, until they are matched with passengers again.

Conclusions

Hierarchical control structure bridges **macroscopic** and **microscopic** scopes.



- Advanced control methods can help with efficient fleet management, to answer more requests with less waiting time.
- Data-driven control method can learn how to control the system directly from the collected data, bypassing the process to build a model/identify the parameters.

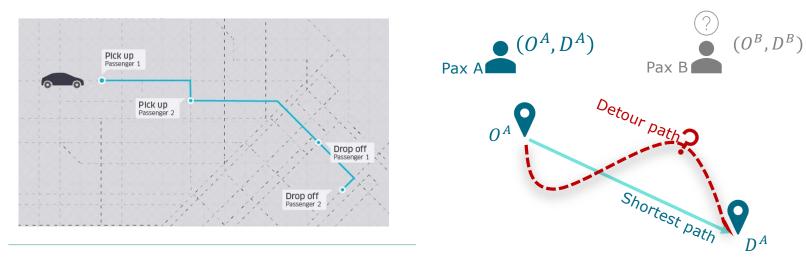


Is the shortest path the best?

— Path planning for Ride-sharing Vehicles

Pengbo ZHU, Giancarlo Ferrari-Trecate, Nikolas Geroliminis EPFL

Motivation



Example of a Pool Trip

Efficient & Fast path planning:

- Given Start (Origin) and Goal (Destination) of Pax A;
- Find a path: higher possibility to pick up a second passenger en route, at the same time, coordinates with other vehicles.
- Satisfy constraints, such as max. delay of Pax A and Pax B;

What is path planning

Path Planning

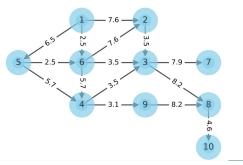
Path planning addresses the problem of finding a good path from the starting point to the goal.

—avoiding obstacles, avoiding enemies, and **minimizing costs** (fuel, time, distance, money, etc.)

Our objective:

1) Geometrical Cost

• Travelling distance/time of the planned route.



For graph G = (Q, E, w),

Edge weight w is defined as the length of the road segment.

2) Likelihood of getting a second passenger

- (Attractiveness) Passenger demand distribution
- (Repulsiveness) Other vehicles: Idle & not-fully occupied vehicles

Decision Variable

$$x_{ij} = \begin{cases} 1 & \text{if edge (i, j) is part of the path} \\ 0 & \text{otherwise} \end{cases}$$

Objective Function

The objective is to minimize:

Likelihood of get a second passenger

$$J = \sum_{(i,j) \in E} T_{ij} x_{ij} - \gamma \sum_{(i,j) \in E} \left(1 - \left(1 - p_{ij}\right)^{T_{ij}}\right) x_{ij}$$
 Total planned travel time

where

- $\gamma > 0$ is a parameter to balance the trade-off between minimizing the trip travelling time and maximizing the likelihood of picking up a second passenger.
- w_{ij} is the link length associated with edge (i,j),
- $T_{ij} = \frac{w_{ij}}{\hat{v}}$ is the travel time on edge (i,j),
- p_{ij} is the adjusted probability of getting a second passenger on edge (i, j) for a time unit.

Case Study

Proposed: 11.91 km

Shortest (Travel time Only): 9.54km

Our proposed method designs a path that:

- 1. Avoid 'overlapping' with other planned routes,
- 2. Keep distance from other empty vehicles,
- 3. Pass through higher demand area,
- 4. An acceptable detour distance.

Blue diamonds: Idle vehicles

Red diamonds: Not fully-occupied vehicles

Red dotted lines: planned routes of not fully-occupied vehicle

Case Study

Fleet size = 200; all order: 7200

	Answer rate (%)	Waiting time (s)	Shared trip	Av. Extra trav time (s)
Proposed	82.2	118.1	3181	301.3
No share	66.9	189.5	NaN	0

Take home message:

- Design a path planning algorithm for not-fully-occupied vehicles
 - 1) Consider the passenger demand (Attractiveness),
 - 2) Coordinate with other vehicles (Repulsiveness).
- Computation load is light.
- Better service with higher answer rate and shorter waiting time.