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“Where should an empty Uber go?”
— Vehicle rebalancing in Mobility on demand systems



Challenges in the field of research

Complex 
interactions

• Multimodality

• Components adapt

• Competing operators

• Spreading phenomena

Limits to 
predictability

Limits to 
cooperation

Limits to 
centralization

Athens, GR
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CONTROL
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A human-centric ubiquitous mobility

SHARED &
ON-DEMAND 
TRANSPORT
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Goal: Empty vehicle repositioning

• Reposition vehicles to high demand regions
[1] Zuba blog, https://medium.com/zoba-blog/supply-demand-imbalance-in-shared-mobility-cost-and-consequence-72a50007831b

Imbalance between passenger demand and vehicle supply

Motivation



Introduction
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Teal circles : areas that net attract vehicles;
Red circles : areas that net lose vehicles.

weekday vehicle circulation patterns in Austin, Texas

Imbalance between supply and demand:

• Non-uniform passenger’s demand for rides in different districts

• Asymmetry between origin and destination distributions of trips

[1] Zuba blog, https://medium.com/zoba-blog/supply-demand-imbalance-in-shared-mobility-cost-and-consequence-72a50007831b



Imbalance in the spatial distribution of vehicles:
• Non-uniform passenger’s demand for rides in different districts,
• Asymmetry between origin and destination distributions of trips.

Motivation



Imbalance in the spatial distribution of vehicles:
• Non-uniform passenger’s demand for rides in different districts,
• Asymmetry between origin and destination distributions of trips.

Motivation



Far away
 from high demand region

Without intervention from the operator,

The fleet will be increasingly concentrated in low-demand locations,
rather than high-demand locations. 

: High-demand regions

: ?

Goal: rebalancing vehicles
• Relocating vehicles to the high-demand regions.

Motivation



State-of-the-art
• applied to car-sharing or bike-sharing systems 
  but few in the ride-sourcing systems.

• operated with a long rebalancing interval

• limited to several stations with a small fleet size.

1. https://www.eltis.org/discover/news/stockholms-bike-sharing-scheme-receive-electrifying-upgrade-sweden
2. [Smith,2013]. "Rebalancing the rebalancers: Optimally routing vehicles and drivers in mobility-on-demand systems."

Region/Station-level 
rebalancing strategy

Q: Is it possible to get a more 
precise position guidance?

https://www.eltis.org/discover/news/stockholms-bike-sharing-scheme-receive-electrifying-upgrade-sweden


Vision

• A new mobility paradigm through flexibility, cooperation 
and collectivity.
• Revolutionize how emerging technologies reshape 
mobility
• Avoid erratic developments that can create monopolies 
• Identify new ways of governance 
• Integrate distributed and hierarchical control

SHARED &
ON-DEMAND 
TRANSPORT



• Trip-based MFD model

• Fleet size
• Willingness to share
• Drivers’ behavior

• Cruise immediately
• Rebalance to depots;

Data and simulation description
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Locations of depots and closest 
nodes.

O-D 
demandGreedy Pooling policyBeojone and Geroliminis, TR part C, 2021



Results
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Figure 3. System’s revenues.

Figure 2. Average journey 
duration. 

Figure 1. Average Waiting times. 



Idle-vehicle Rebalancing Coverage Control for 
Ride-sourcing systems1
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Vehicle rebalancing problem

Coverage control problem

Every agent/vehicle 𝑥! is responsible for covering a certain area 𝑊!
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𝜑 𝑞  : demand density function, 
𝑥": position of idle AVs,
𝑛:  fleet size of idle AVs,

𝑆": covered area,
𝑉": Voronoi cell,
𝑊" = 𝑆" ∩ 𝑉" .

[1] P. Zhu et al, "Idle-vehicle Rebalancing Coverage Control for Ride-sourcing systems," ECC 2022.



Voronoi partition:

• The partitioning of a plane with n points into covex polygons.

• Each cell contains one generator/seed.

• Every point in a given cell is closer to its seed than to any 
other.

Why we use it?
o The pick-up task at a point 𝑞 ∈ 	𝑉! 	in the Voronoi cell 𝑉! should 

be executed by the vehicle closest to 𝑞, which is exactly the 
vehicle 𝑖. 

Problem Formulation



The local minimum of 𝐻 can be obtained when all 𝑥! are located 
at centroids (centers of mass, 𝐶"" ) of their respective Voronoi 
cells (𝑊!), i.e., Centroidal Voronoi Configuration(CVC)[1].

[1] Du, Q., V. Faber and M. Gunzburger (1999) Centroidal voronoi tessellations: Applications and algorithms

Distributed Coverage Control Algorithm

Every agent/vehicle 𝑥! is responsible for covering a certain area 𝑊!
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 where 𝜑 𝑞  is the demand density function.



Lloyd’s algorithm:
1) Obtain the Voronoi Parition;
2) Calculate the centroid of each cell;
3) Move from current position to the centroid;
4) Return to Step 1), until find the centroidal Voronoi configuration (CVC).

Iteration 1 Iteration 2 Iteration 3
Example of Lloyd's algorithm. 

The Voronoi diagram of the current positions (red) at each iteration is shown. 
The gray circles denote the centroids of the Voronoi cells

Iteration 4 (CVC)



Case Study : Shenzhen, China
Simulated network:
• Shenzhen, China
• 1858 nodes
• 2013 links
• 199,819 trips consisting of origins, 

destinations, and time

[1] Beojone, Caio & Geroliminis, Nikolas. (2020). On the inefficiency of ride-sourcing services towards urban congestion. 



Case Study: Shenzhen, China
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blue:    idle vehicle (i.e., empty, looking for a passenger),
green:  passenger-assigned vehicle,
red:    passenger-carrying vehicle.

Demand density function Demo video



Results and Analysis

• 3-hour simulation
• Time Pattern of demand: low-high-low, each period lasts for 1 hour
• 2400 orders
• Fleet size = 150
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CVR Do-nothing Improvement

Answer rate (%) 82.9 73.2 13.3%↑

Average waiting time (s) 132.5 173.9 23.8%↓

NB: 
1. CVR: Coverage Control for Vehicle Rebalancing;
2. Do-nothing: AVs stop at their last destinations, until they are matched with passengers again. 



Comparison of different states of vehicles 

• Operate the fleet more efficiently as a larger amount of vehicles are actively serving passengers

Results and Analysis



Extension: Is it necessary to make all 
empty vehicles follow coverage control?
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Blue dot: active idle
Gray square: Not-relocated idle



Extension: Is it necessary to make all 
empty vehicles follow coverage control?
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Pros
• Enhanced answer rate
• Reduced waiting times

Cons:
• Extra energy or fuel cost
• Congestion 
• Emissions 



Extension: Is it necessary to make all 
empty vehicles follow coverage control?
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Answer rate 
(%)

Average 
waiting time 

(s)

Rebalancing 
distance 

(km)

CVR 82.6 127.0 4804.8

CVR-PI 82.4 139.4 2314.7

Do-nothing 73.1 155.1 0



Drawback of use coverage control only:
it may lack coordination of other regions
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blue:    empty vehicles



High-level:
Control vehicle transferring 

between regions

Low-level:
Give precise position guidance

within each region

Hierarchical structure for Vehicle Rebalancing
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DeePC for Vehicle Rebalancing

&
𝑥#$% = 𝐴𝑥# 	+ 𝐵𝑢# 	+ 	𝐵& 	𝑤# 	
𝑦# 	 = 𝐶𝑥# + 𝐷𝑢# 	+ 	𝐷&𝑤# ,

Assume AMoD system is a LTI system 
with measurable disturbance:

𝑢)* 	:  No. of empty vehicles be relocated from Region I to Region J.

𝑦) : No. of successfully answered requests in Region I.

𝑤)+ : No. of requests which starts from Region I,
𝑤), 	: No. of requests which ends in Region I.

Control input

Output

External disturbance

Schematic diagram of inter-regional rebalancing
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Review of DeePC

• Non-parametric method

• Use input/output trajectories 

• Satisfy input/output constraints

Data-enabled Predictive Control Algorithm(DeePC)1

[1] Coulson et al. (2018), ”Data-Enabled Predictive Control: In the Shallows of the DeePC”
[2] Huang et al. (2019), https://drive.google.com/file/d/1DU-JkNShGAX23ZKzGAcw97Qg_tLzVx-g/view

DeePC for black-box system2
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Review of DeePC

• A discrete-time linear time-invariant (LTI) system:

• Historical input and output data of length 𝑇:

• Hankel matrix:

𝑢 is persistently exciting of order 𝐿 
if 𝐻# 𝑢  has full row rank.
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Review of DeePC

• A discrete-time linear time-invariant (LTI) system:

• Historical input and output data of length 𝑇:

• Construct input/output Hankel matrix:

the first 𝑇!$! block row 
the last 𝑁   block row 

{
{

If 𝑢- 	is persistently exciting of order 𝑇!$! +𝑁 + 𝑛, 
then 𝑐𝑜𝑙 𝑢!$! , 𝑦!$! , 𝑢, 𝑦  is a trajectory of this system1 
if and only if there exists  𝑔 ∈ ℝ./.!$!/01#	such that

Most recent measurement (of length 𝑇"%")

Future trajectory (Horizon 𝑁)

[1] Willems et al. (2005), "A note on persistency of excitation.”

“All trajectories can be reconstructed from finitely many, 
sufficeiently rich previous trajectories”2

[2] Jeremy Coulson, John Lygeros, and Florian Dörfler. Sparse learning workshop 2020. 
29



Review of DeePC

[1] Jeremy Coulson, John Lygeros, and Florian Dörfler. Sparse learning workshop 2020. 

Predictive model and state estimation in MPC is replaced 
by raw data in a Hankel matrix in DeePC1.
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Problem Formulation

Economic Control Objective
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1. Answer more requests 2. Consider rebalancing cost



Problem Formulation

Economic Control Objective Regularization terms:
1. Feasibility
2. Avoid overfitting
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Problem Formulation
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Constraints:
1. Positivity
2. Operate based on current avaliability

𝑛#, : # of empty vehicles in Region I

Hankel matrix:
Constructed by
historical data



High-level:
Control vehicle transferring 

between regions

Low-level:
Give precise position guidance

within each region

Low-level controller
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[1] Zhu et al. (2024), "A Coverage Control-Based Idle Vehicle Rebalancing Approach for Autonomous Mobility-on-Demand Systems."

Coverage control algorithm has been applied in mobile multi-agent problems1.

Low-level controller: Coverage Control-based

35

“What is the demand is not evenly distributed in one region?”



Case Study

Simulated network:
• Shenzhen, China
• 1858 nodes
• 2013 links

36
[1] Beojone et al.(2020), ”On the inefficiency of ride-sourcing services towards urban congestion.”



Demo video

Trip Origin Distribution
Blue circles (High): vehicles rebalanced to another region 
Blue dots (Low):   vacant vehicles  staying in current region
green:  passenger-assigned vehicle,
red:    passenger-carrying vehicle. 37



Results and Analysis
• 3-hour simulation 
• 5500 orders
• Fleet size = 300

NB: 
1. Upper + Lower: apply DeePC as high-level controller, meanwhile, apply coverage control for each region.
2. Upper Only: only apply DeePC for the inter-regional vehicle transfer.
3.  Lower Only: only apply coverage control for the whole map.
4.  No Control: vehicles stop at their last destinations, until they are matched with passengers again. 

Answer rate 
(%)

Average waiting time
 (s)

Rebalancing distance
(km)

Upper + Lower 88.5 134.7 4276.7

Upper Only 85.5 139.3 4958.4

Lower Only 84.2 139.0 5155.1 

No Control 53.8 155.6 0.0
No Control 

(fleet size = 450) 69.2 140.4 0.0
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Conclusions

High-level:
Control vehicle transferring 

between regions

Low-level:
Give precise position guidance

within each region

Hierarchical control structure 
bridges macroscopic and microscopic scopes.

• Advanced control methods can help with efficient 
fleet management, to answer more requests with 
less waiting time.

• Data-driven control method can learn how to control 
the system directly from the collected data, 
bypassing the process to build a model/identify the 
parameters.
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𝑂), 𝐷) (𝑂- , 𝐷-)
Pax A Pax B

𝑂.

𝐷.

Shortest path

Detour path





𝑖𝑓	𝑒𝑑𝑔𝑒 𝑖, 𝑗 	𝑖𝑠	𝑝𝑎𝑟𝑡	𝑜𝑓	𝑡ℎ𝑒	𝑝𝑎𝑡ℎ
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Objective Function
The objective is to minimize:

𝐽 = 	 4
!,0 ∈2

𝑇!0𝑥!0 − 𝛾 4
!	,0 ∈2

1 − 1 − 𝑝!0
3!& 𝑥!0

where
• 𝛾 > 0 is a parameter to balance the trade-off between minimizing the trip travelling time and 

maximizing the likelihood of picking up a second passenger.
• 𝑤!0  is the link length associated with edge (𝑖, 𝑗), 

• 𝑇!0 =
4!&

56
 is the travel time on edge (𝑖, 𝑗),

• 𝑝!0  is the adjusted probability of getting a second passenger on edge 𝑖, 𝑗  for a time unit.

Total planned travel time     

Likelihood of get a second passenger 



Blue diamonds: Idle vehicles 
Red diamonds: Not fully-occupied vehicles
Red dotted lines: planned routes of not fully-occupied vehicle  

Start 𝑶𝑨

Goal 𝑫𝑨

Proposed: 11.91 km
Shortest (Travel time Only): 9.54km

Our proposed method designs a path that:
1. Avoid ‘overlapping’ with other planned routes,
2. Keep distance from other empty vehicles,
3. Pass through higher demand area,
4. An acceptable detour distance.



Fleet size = 200; all order: 7200

Take home message:

• Design a path planning algorithm for not-fully-occupied vehicles

 1) Consider the passenger demand (Attractiveness), 

 2) Coordinate with other vehicles    (Repulsiveness).

• Computation load is light.

• Better service with higher answer rate and shorter waiting time.

Answer rate
(%)

Waiting time 
(s)

Shared trip Av. Extra trav time (s)

Proposed 82.2 118.1 3181 301.3
No share 66.9 189.5 NaN 0


