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Challenges in the field of research

Limits to
centralization

Limits to

predictability







Motivation

Imbalance between passenger demand and vehicle supply

Goal: Empty vehicle repositioning

« Reposition vehicles to high demand regions
[1] Zuba blog, https://medium.com/zoba-blog/supply-demand-imbalance-in-shared-mobility-cost-and-consequence-72a50007831b
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Introduction

Imbalance between supply and demand:

e Non-uniform passenger’s demand for rides in different districts

Austin

e Asymmetry between origin and destination distributions of trips

weekday vehicle circulation patterns in Austin, Texas

Red circles : areas that net lose vehicles.

[1] Zuba blog, https://medium.com/zoba-blog/supply-demand-imbalance-in-shared-mobility-cost-and-consequence-72a50007831b



Motivation

Imbalance in the spatial distribution of vehicles:

* Non-uniform passenger’s demand for rides in different districts,
« Asymmetry between origin and destination distributions of trips.



Motivation

Imbalance in the spatial distribution of vehicles:

Non-uniform passenger’s demand for rides in different districts,
Asymmetry between origin and destination distributions of trips.



Motivation

"I e “\ /”’ f —0)

1o® V' Far away 0—O0
1 - -
}\""e from high demand region

Ve !

\ 1

e

ﬁ 2 : High-demand regions

Without intervention from the operator, a\ R 2

The fleet will be increasingly concentrated in low-demand locations,
rather than high-demand locations.

Goal: rebalancing vehicles
* Relocating venhicles to the high-demand regions.



State-of-the-art

applied to car-sharing or bike-sharing systems
but few in the ride-sourcing systems.

operated with a long rebalancing interval

limited to several stations with a small fleet size.

Region/Station-level
rebalancing strategy

Q: Is it possible to get a more
precise position guidance?

1. https://www.eltis.org/discover/news/stockholms-bike-sharing-scheme-receive-electrifying-upgrade-sweden
2. [Smith,2013]. "Rebalancing the rebalancers: Optimally routing vehicles and drivers in mobility-on-demand systems."



https://www.eltis.org/discover/news/stockholms-bike-sharing-scheme-receive-electrifying-upgrade-sweden

Vision

A new mobility paradigm through flexibility, cooperation
and collectivity.

- Revolutionize how emerging technologies reshape
mobility

* Avoid erratic developments that can
« Identify new ways of governance




Data and simulation description
Trip-based MFD model
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Fleet size
Willingness to share
Drivers’ behavior

* Cruise immediately
« Rebalance to depots;

Locations of depots and closest

nodes.

Greedy Pooling policy
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Results
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Figure 1. Average Waiting times.
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Figure 3. System’s revenues.
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Idle-vehicle Rebalancing Coverage Control for
Ride-sourcing systems!

Vehicle rebalancing problem
v

(a) Demand densny function (b) Initial configuration

;2&\@9 ‘ Coverage control problem

A\/\

\

Every agent/vehicle x; is responsible for covering a certain area W,

x-coordinate (m)

(c) Final configuration

H(X, W) =iH(xi,Wi) =if lx; — qll*¢(q)dq
i=1 =1 " 9€Wi

Fig. 1: Continuous case study

x;: position of idle AVs, S;: covered area, _ _
n: fleet size of idle AVs, v;: Voronoi cell,  ®(q) : demand density function,
W;=8§nV;.

[1] P. Zhu et al, "Idle-vehicle Rebalancing Coverage Control for Ride-sourcing systems," ECC 2022.
13



Problem Formulation

Voronoi partition:
« The partitioning of a plane with n points into covex polygons.
« Each cell contains one generator/seed.

« Every point in a given cell is closer to its seed than to any
other.

Why we use it?

o The pick-up task at a point g € V; in the Voronoi cell V; should
be executed by the vehicle closest to g, which is exactly the
vehicle i.



Distributed Coverage Control Algorithm

Every agent/vehicle x; is responsible for covering a certain area W

HX, W) = zn:H(xi» W) = zn:f . lx; — qll?@(q)dq
i=1 =1 "9%";

where ¢(q) is the demand density function.

The local minimum of H can be obtained when all x; are located
at centroids (centers of mass, C,, ) of their respective Voronoi

cells (W;), i.e., Centroidal Voronoi Configuration(CVC)[1].

[1] Du, Q., V. Faber and M. Gunzburger (1999) Centroidal voronoi tessellations: Applications and algorithms



Lloyd’s algorithm:

1) Obtain the Voronoi Parition;
2) Calculate the centroid of each cell;

3) Move from current position to the centroid;
4) Return to Step 1), until find the centroidal Voronoi configuration (CVC).

Iteration 1 Iteration 2 Iteration 3 Iteration 4 (CVC)

Example of Lloyd's algorithm.

The Voronoi diagram of the current positions (red) at each iteration is shown.
The gray circles denote the centroids of the Voronoi cells



Case Study : Shenzhen, China
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[1] Beojone, Caio & Geroliminis, Nikolas. (2020). On the inefficiency of ride-sourcing services towards urban congestion.
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Case Study: Shenzhen, China
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blue: idle vehicle (i.e., empty, looking for a passenger),

green: passenger-assigned vehicle,
red: passenger-carrying vehicle.
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Results and Analysis

3-hour simulation

Time Pattern of demand: low-high-low, each period lasts for 1 hour
2400 orders

Fleet size = 150

CVR Do-nothing Improvement
Answer rate (%) 82.9 73.2 13.3%17
Average waiting time (s) 132.5 173.9 23.8%!

NB:
1. CVR: Coverage Control for Vehicle Rebalancing;
2. Do-nothing: AVs stop at their last destinations, until they are matched with passengers again.

19



Results and Analysis

proposed method

I # of idle
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Comparison of different states of vehicles

+ Operate the fleet more efficiently as a larger amount of vehicles are actively serving passengers
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Extension: Is it necessary to make all
empty vehicles follow coverage control?

y-coordinates (km)

# of idle vehicle = 61, # of not-relocated idle = 24
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Blue dot: active idle
Gray square: Not-relocated idle
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Extension: Is it necessary to make all
empty vehicles follow coverage control?

Pros Cons:
« Enhanced answer rate « Extra energy or fuel cost
« Reduced waiting times « Congestion
« Emissions

22
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Extension: Is it necessary to make all
empty vehicles follow coverage control?

CVR Do-nothing CVR-PI

150 150 150

100 100 | 100 |

\ # of not-relocated idle
B  of active idle

[ # of passenger-assigned
I # of passenger-carrying

50 50 | 50 |

Average Rebalancing
Answer rate e . .
(%) waiting time distance
(s) (km)
CVR 82.6 127.0 4804.8
CVR-PI 82.4 139.4 2314.7
Do-nothing 73.1 155.1 0

23



@ NCCR

®> Automation

Drawback of use coverage control only:
it may lack coordination of other regions
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Hierarchical structure for Vehicle Rebalancing

T

= ode

High Level (Regional Level) Low Level (Vehicle Level)

R1

25



DeePC for Vehicle Rebalancing

Region 1

T

Region 5

Region 4

Region 3

Assume AMoD system is a LTI system

/0 Region 2 with measurable disturbance:

Xrk+1 :Axk +Buk + Bd Wi
YV = ka +Duk + Dde,

Schematic diagram of inter-regional rebalancing

Control input

External disturbance

u;; - No. of empty vehicles be relocated from Region I to Region J.
y; + No. of successfully answered requests in Region I.

wf : No. of requests which starts from Region I,
wP : No. of requests which ends in Region I.

26



Review of DeePC

Data-enabled Predictive Control Algorithm(DeePC)!

Black-box system

* Non-parametric method I

Inputs Outputs Data

« Use input/output trajectories

DeePC

 Satisfy input/output constraints

DeePC for black-box system?2

[1] Coulson et al. (2018), "Data-Enabled Predictive Control: In the Shallows of the DeePC”
[2] Huang et al. (2019), https://drive.google.com/file/d/1DU-JKNShGAX23ZKzGAcw97 tLzVx-g/view

27



Review of DeePC

« A discrete-time linear time-invariant (LTI) system:

Ti41 — AZL’t B B’Ut
ys = Cxy + Duy

« Historical input and output data of length T:

ud = col(uy, ..., Us, ..., ur)
yd = col(Y1, ooy Yiy eoes YT)

« Hankel matrix:

Uul u2 e UT—-L+1
Ho () U2 us cee UT—L42
L(u) :=
u is persistently exciting of order L
ur Ur+i1 ... ur

if H,(u) has full row rank.



Review of DeePC

« A discrete-time linear time-invariant (LTI) system:

Ti41 = AiL't B B’Ut
ys = Cxy + Duy

« Historical input and output data of length T:

{ ud = col(uy, ..., Us, ..., ur)

d
= cOl(Y1,y eees Yiy ooy _ . .
4 (15 o0y Yis e y7) If u is persistently exciting of order T;,; + N +n,

then col(u,;, yini, w, y) is a trajectory of this system?

» Construct input/output Hankel matrix: if and only if there exists g € RT-Tmi~N*1 gych that

{ Up L H ( d) Up Uing
| Uf | T AN w)s Yy? g= | Yimi Most recent measurement (of length T;,;)
U’ - u
YP f
[ 1 ¢l :| = %Tini-l-N(yd)' Y Y

“All trajectories can be reconstructed from finitely many,
sufficeiently rich previous trajectories”?

[1] Willems et al. (2005), "A note on persistency of excitation.” 29
[2] Jeremy Coulson, John Lygeros, and Florian Dorfler. Sparse learning workshop 2020.



Review of DeePC

MPC:

Tp—1

2
S 2
minimize E ||yk — Titk H + llurllr
u,xr,y Q

k=0

subjectto z341 = Azy + Buy, Vk € {0

Trp41 = Az + Buy,

yr = Cxp + Duy, Yk € {—Tiyi
Uk GU, Vk € {0,...,Tf—]_}’
yp €Y, Vke€ {0,..., Ty — 1}.

DeePC:
Tg—1
- 2 2
minimize E Hyk — Titk || + llukllr
g,u,y Q
k=0
; Uini
i 3 u S Yini
subject to L}‘fnni+Tf (y) g = - ,
y
up €U, Vk € {0,...,Tf—1},
yp €Y, Ve € {0,..., Ty — 1}.

Predictive model and state estimation in MPC is replaced
by raw data in a Hankel matrix in DeePC!.

[1] Jeremy Coulson, John Lygeros, and Florian Dérfler. Sparse learning workshop 2020.

30



Problem Formulation

2. Consider rebalancing cost
N -1

= ) 0yl + -

=0

min f(uk+i,yk+i) + }‘9”9”% + Ay”‘fy”%

Q,U,y,o'y

we Wini 0
_ Yp | Yini Oy
subject to uf | 9= u + 0 |
wt w 0
| Yr Ly | Lo

Ui >0,¥i€0,1,...,N —1.

Kn
Y upl =nf,VI€0,1,..., K,
J=1

Yesi >0,V €0,1,...,N —1.

31



Problem Formulation

on m;r; If(uk+z,3/k+z)|+ )‘9”9”1 + )‘y”Uy”I
b b b y

WP Wini 0 1. Feasibility
. yr | Yini Oy 2. Avoid overfitting
subject to uf | 9= u + 0 |
wt w 0
Y ] Ly | Lo

Ui >0,¥i€0,1,...,N —1.

Zuk =nl,VI€0,1,...,K,.

Yesi >0,V €0,1,...,N —1.



Problem Formulation

min
g’u7y70y

subject

Hankel matrix:

Constructed by
historical data

F (Ui, Yrrs) + AgllgllF + Aylloy 17

|-- TP -"; I Uing
1| We | Wini
| Yp .
1, — Yini
Wi w
Ny b [y ] |

L-———

Ui >0V €0,1,...,N = 1.

K,
Zui‘] = ni,‘v’[ €0,1,...,K,.
J=1

Yesi >0,V €0,1,...,N —1.

nk: # of empty vehicles in Region I

Constraints:
1. Positivity
2. Operate based on current avaliability

33



Low-level controller

R1

Low Level (Vehicle Level)

34



Low-level controller: Coverage Control-based

“"What is the demand is not evenly distributed in one region?”

(a) Demand density distribution (b) Initial configuration of agents (c) Optimal configuration of agents

Coverage control algorithm has been applied in mobile multi-agent problems!.

[1] Zhu et al. (2024), "A Coverage Control-Based Idle Vehicle Rebalancing Approach for Autonomous Mobility-on-Demand Systems." 35



Case Study
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[1] Beojone et al.(2020), “On the inefficiency of ride-sourcing services towards urban congestion.”
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Demo video

Time = 0.00hour, idle vehicle = 53,RV = 41
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Blue circles (High): vehicles rebalanced to another region i . . i
Blue dots (Low): vacant vehicles staying in current region Trip Origin Distribution
green: passenger-assigned vehicle,

red: passenger-carrying vehicle. 37




Results and Analysis

 3-hour simulation
« 5500 orders
 Fleet size = 300

Answer rate Average waiting time Rebalancing distance
(%) (s) (km)
Upper + Lower 88.5 134.7 4276.7
Upper Only 85.5 139.3 4958.4
Lower Only 84.2 139.0 5155.1
No Control 53.8 155.6 0.0
No Control
(fleet size = 450) 69.2 140.4 0.0
NB:
1. Upper + Lower: apply DeePC as high-level controller, meanwhile, apply coverage control for each region.
2. Upper Only: only apply DeePC for the inter-regional vehicle transfer.
3. Lower Only: only apply coverage control for the whole map.
4. No Control: vehicles stop at their last destinations, until they are matched with passengers again. 3g



Conclusions

Hierarchical control structure
bridges macroscopic and microscopic scopes.

« Advanced control methods can help with efficient

fleet management, to answer more requests with
less waiting time.

« Data-driven control method can learn how to control
the system directly from the collected data,
bypassing the process to build a model/identify the
parameters.

39



Is the shortest path the best-

— Path planning for Ride-sharing Vehicles

Pengbo ZHU, Giancarlo Ferrari-Trecate, Nikolas Geroliminis

EPFL



Motivation
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Example of a Pool Trip

Efficient & Fast path planning:

« Given Start (Origin) and Goal (Destination) of Pax A;

« Find a path: higher possibility to pick up a second passenger en route, at the same time,
coordinates with other vehicles.

« Satisfy constraints, such as max. delay of Pax A and Pax B;



What is path planning

Path Planning
Path planning addresses the problem of finding a good path from the starting point to the goal.

—avoiding obstacles, avoiding enemies, and minimizing costs (fuel, time, distance, money, etc.)

Our objective: e .
1) Geometrical Cost 25_.?435_.

* Travelling distance/time of the planned route.

gE—N

3<79—>7
Z
31— 9—82—>T

=P
o¢

For graph G = (Q,E,w),
Edge weight w is defined as the length of the road segment.

2) Likelihood of getting a second passenger
* (Attractiveness) Passenger demand distribution

* (Repulsiveness) Other vehicles: Idle & not-fully occupied vehicles



Problem Formulation

Decision Variable

if edge (i,j) is part of the path
otherwise

Objective Function

The objective is to minimize: Likelihood of get a second passenger

where

e ¥ > 0 is a parameter to balance the trade-off between minimizing the trip travelling time and
maximizing the likelihood of picking up a second passenger.

* w;;j is the link length associated with edge (i, ),

e Ty = %is the travel time on edge (i,)),

* pjj is the adjusted probability of getting a second passenger on edge (i, ) for a time unit.



Case Study
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Blue diamonds: Idle vehicles
Red diamonds: Not fully-occupied vehicles
Red dotted lines: planned routes of not fully-occupied vehicle

ve

Proposed: 11.91 km
Shortest (Travel time Only): 9.54km

Our proposed method designs a path that:

1. Avoid ‘overlapping’ with other planned routes,
2. Keep distance from other empty vehicles,

3. Pass through higher demand area,

\4. An acceptable detour distance. /



Case Study

Fleet size = 200; all order: 7200

Proposed 82.2 118.1 3181 301.3
No share 66.9 189.5 NaN 0

Take home message:

* Design a path planning algorithm for not-fully-occupied vehicles
1) Consider the passenger demand (Attractiveness),
2) Coordinate with other vehicles (Repulsiveness).

* Computation load is light.

* Better service with higher answer rate and shorter waiting time.



